Stabilization of the U5-leader stem in the HIV-1 RNA genome affects initiation and elongation of reverse transcription.
نویسندگان
چکیده
Reverse transcription of the Human Immunodeficiency Virus type I (HIV-1) RNA genome is primed by a cellular tRNA-lys3 molecule that binds to the primer binding site (PBS). The PBS is predicted to be part of an extended RNA structure, consisting of a small U5-PBS hairpin and a large U5-leader stem. In this study we stabilized the U5-leader stem of HIV-1 to study its role in reverse transcription. We tested in vitro synthesized wild-type and mutant templates in primer annealing, initiation and elongation assays. Stabilization of the stem inhibits the initiation of reverse transcription, but not the annealing of the tRNA primer onto the PBS. These results suggest that stabilization of the stem results in occlusion of a sequence motif that is involved in an additional interaction with the tRNA-lys3 primer and that is needed to trigger the initiation of reverse transcription. The stable structure was also found to affect the elongation of reverse transcription, causing the RT enzyme to pause upon copying 7-8 bases into the extended base paired stem. The stabilizing mutations were also introduced into proviral constructs for replication studies, demonstrating that the mutant viruses have a reduced replication capacity. Analysis of a revertant virus demonstrated that opening of the stabilized U5-leader stem can restore both virus replication and reverse transcription.
منابع مشابه
The tRNA primer activation signal in the human immunodeficiency virus type 1 genome is important for initiation and processive elongation of reverse transcription.
Human immunodeficiency virus type 1 (HIV-1) reverse transcription is primed by the cellular tRNA(3)(Lys) molecule, which binds, with its 3"-terminal 18 nucleotides (nt), to a complementary sequence in the viral genome, the primer-binding site (PBS). Besides PBS-anti-PBS pairing, additional interactions between viral RNA sequences and the tRNA primer are thought to regulate the process of revers...
متن کاملGenetic Analysis of a Unique Human Immunodeficiency Virus Type 1 (HIV-1) with a Primer Binding Site Complementary to tRNA Supports a Role for U5-PBS Stem-Loop RNA Structures in Initiation of HIV-1 Reverse Transcription
Human immunodeficiency virus type 1 (HIV-1) exclusively uses tRNA3 Lys to initiate reverse transcription. A novel HIV-1 mutant which stably utilizes tRNA rather than tRNA3 Lys as a primer was previously identified [HXB2(Met-AC] (S.-M. Kang, Z. Zhang, and C. D. Morrow, J. Virol. 71:207–217, 1997). Comparison of RNA secondary structures of the unique sequence (U5)-primer binding site (PBS) viral ...
متن کاملInitiation of HIV-2 reverse transcription: a secondary structure model of the RNA?tRNALys3 duplex
Human immunodeficiency virus type 2 (HIV-2) reverse transcription is initiated from cellular tRNA(Lys3) partially annealed to the RNA viral genome at the primer binding site (PBS). This annealing involves interactions between two highly structured RNA molecules. In contrast to HIV-1, in which the reverse transcription initiation complex has been thoroughly studied, there is still little informa...
متن کاملThe availability of the primer activation signal (PAS) affects the efficiency of HIV-1 reverse transcription initiation
Initiation of reverse transcription of a retroviral RNA genome is strictly regulated. The tRNA primer binds to the primer binding site (PBS), and subsequent priming is triggered by the primer activation signal (PAS) that also pairs with the tRNA. We observed that in vitro reverse transcription initiation of the HIV-1 leader RNA varies in efficiency among 3'-end truncated transcripts, despite th...
متن کاملA conserved hairpin motif in the R-U5 region of the human immunodeficiency virus type 1 RNA genome is essential for replication.
The untranslated leader region of the human immunodeficiency virus (HIV) RNA genome contains multiple hairpin motifs. The repeat region of the leader, which is reiterated at the 3' end of the RNA molecule, encodes the well-known TAR hairpin and a second hairpin structure with the polyadenylation signal AAUAAA in the single-stranded loop [the poly(A) hairpin]. The fact that this poly(A) stem-loo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 28 21 شماره
صفحات -
تاریخ انتشار 2000